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The purpose of this study was to determine if aversive effects of alcohol withdrawal could be detected in
mice using the place conditioning procedure and whether the GABAA receptor antagonist, pentylenetetrazol
(PTZ), would increase the aversive effects of alcohol withdrawal and increase the probability of detecting
conditioned place aversion. Subjects were alcohol-naïve mice from a specific line selectively bred for low
alcohol preference (LAP1; n=91) and were assigned to three groups: alcohol withdrawal, PTZ alone, and
PTZ+alcohol withdrawal. On four trials, mice received either a 4.0 g/kg intraperitoneal (i.p.) injection of
alcohol (alcohol withdrawal, PTZ+alcohol withdrawal groups) or saline (PTZ group) 8 h prior to being
placed on a distinctive floor texture for a 30-min conditioning session. Five minutes before these sessions,
mice in the PTZ and PTZ+alcohol withdrawal groups received PTZ (5.0 mg/kg; i.p.) and the alcohol
withdrawal group received saline. On intervening days mice received two saline injections at the same time
points prior to being placed on a different floor texture. Post-conditioning floor preference was assessed in
two 60-min tests; the first test was drug-free and the second test was state-dependent. Neither alcohol
withdrawal nor PTZ produced significant place conditioning. The PTZ+alcohol withdrawal group showed a
significant place aversion during the state-dependent test. These data suggest that the combined stimulus
properties of PTZ and alcohol withdrawal facilitated the expression of conditioned place aversion to alcohol
withdrawal.
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1. Introduction

The alcohol withdrawal syndrome consists of overt, physical signs
and subjective, motivational symptoms that occur when blood alcohol
levels are falling and after blood alcohol levels have reached zeromg%.
Signs of alcohol withdrawal can range from mild to severe and are
similar in both humans and rodents (Kalant, 1977). These signs
include tremors, convulsions, increased heat rate, and increased body
temperature (Holloway et al., 1993; Majchrowicz, 1975). Symptoms
of alcohol withdrawal, which are reportedly aversive based on
subjective human descriptions, include irritability, nausea, headache,
anxiety, and craving (Swift and Davidson, 1998; Tiffany, 1990). These
aversive symptoms of alcohol withdrawal are thought to largely
contribute to an individual's propensity to consume alcohol and to
their risk for alcoholism (Chester et al., 2002; 2003; Koob, 2003; Wall
and Ehlers, 1995). However, discrepancies in the human literature
indicate that aversive alcohol withdrawal symptoms may be associ-
ated with either increased (McCaul et al., 1991; Newlin and Pretorius,
1990; Span and Earleywine, 1999) or decreased (Wall et al., 2000)
subsequent alcohol consumption. Thus, the relationship between
alcohol withdrawal and alcohol drinking behavior is not well
understood in humans. It is likely that both the type and the severity
of the alcohol withdrawal symptom may influence subsequent
alcohol drinking behavior. For instance, craving has been associated
with a propensity to consume excessive amounts of alcohol (Koob,
2003), whereas headache and nausea have been associated with
alcohol avoidance (Wall et al., 2000).

Animal models of alcohol withdrawal are advantageous because
potentially confounding variables can be better controlled, such as
amount of alcohol exposure and individual (e.g., genetic) and
environmental factors that are known to influence the expression of
the alcohol withdrawal syndrome in humans. Symptoms of alcohol
withdrawal in rodents have been difficult to measure because of their
subjective nature (see Emmett-Oglesby et al., 1990 for review).
However, several models have been used to index withdrawal
symptoms such as anxiety and craving in rodents, including pentyle-
netetrazole (PTZ) drug discrimination (Gauvin et al., 1989), acoustic
startle responding (e.g., Rassnick et al., 1992), the social interaction test
(e.g., Overstreet et al., 2002), the elevated plus maze (e.g., Valdez et al.,
2002), and operant self-administration (e.g., Roberts et al., 2000).
Although anxiety and self-administration models have high face
validity, it is important to remember that alcohol withdrawal-induced
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changes in anxiety or self-administration behavior do not necessarily
reflect the motivational (rewarding or aversive) effects of the alcohol
withdrawal state.

The place conditioning procedure has been used as a sensitive
measure of both rewarding and aversive motivational effects of drug
intoxication and withdrawal (discussed in Bozarth, 1987; Chester and
Cunningham, 2002; Cunningham et al., 2000). This procedure
involves establishing an association between a neutral environmental
conditioning stimulus (CS) and the unconditioned motivational
effects of drug intoxication or withdrawal. The motivational effect of
this association is determined by examining approach to or avoidance
of the drug-paired CS. Greater approach toward and contact with the
CS is interpreted as evidence of the rewarding effect of the drug,
whereas stronger avoidance of the CS is seen as indicative of the
aversive effect of the drug. Advantages and disadvantages of this
procedure as a model to study the motivational effects of drugs have
recently been reviewed (Cunningham et al., 2006). One valuable
aspect of this procedure is that it specifically assesses the learned
relationship between environmental stimuli and motivational effects
of the drug. Thus, this procedure may serve as a particularly useful
model for understanding certain learning and memory processes and
the role of environmental cues in influencing craving, relapse, and
alcohol-seeking behavior in humans (Cunningham et al., 2000).
Another potential advantage, particularly when applied to the study
of alcohol withdrawal, is that it may detect motivational effects of
alcohol withdrawal after relatively small amounts of alcohol exposure
compared to other withdrawal models that often require extended
exposure to alcohol before alcohol withdrawal signs are observable.
This feature of the place conditioning procedure is useful because
initial sensitivity to the aversive motivational effects of alcohol
withdrawal following a single or several discrete alcohol exposures
may be regulated by mechanisms that are different from those that
regulate motivational effects of alcohol withdrawal following contin-
uous or chronic alcohol exposure.

Place conditioning has often been used in rats as a sensitivemeasure
of aversive motivational effects of withdrawal from both acute (e.g.,
Azar et al., 2003; Parker et al., 2002) and chronic (e.g. Mucha, 1987;
Stinus et al., 1990) opiate exposure, largely because withdrawal from
opiates can easily be precipitated using opiate antagonists. There are
only two studies in rats that have used the place conditioning procedure
to study the motivational effects of alcohol withdrawal. In one study, a
place preference was observed (Gauvin et al., 1997) and in another
study, a place aversion was observed (Morse et al., 2000). There are no
studies in mice that have demonstrated place conditioning to the
motivational effects of alcohol withdrawal. The lack of studies showing
place conditioning to alcohol withdrawal could be partly due to the lack
of an established procedure for precipitating withdrawal from alcohol.
Similar to that employedwith opiates, such a procedure would produce
a discrete period of aversive effects during alcohol withdrawal that
could be more easily paired with a neutral CS to produce a conditioned
response.

The goal of the present study was to determine whether aversive
motivational effects of alcohol withdrawal could be detected in mice
using the place conditioning procedure. It was hypothesized that the
time course of physical andmotivational effects of alcohol withdrawal
may overlap. Thus, we chose to condition mice at 8 h in withdrawal, a
time point at which peak physical signs of acute withdrawal, assessed
via handling-induced convulsions (HICs), are evident in mice (e.g.,
Crabbe et al., 1991; Crabbe, 1998; Metten and Crabbe, 1994). Further,
we assessed the effect of a GABAA receptor antagonist (PTZ) on alcohol
withdrawal induced-place conditioning. PTZ has been shown to
enhance the physical signs of alcohol withdrawal (e.g., Chesher and
Jackson, 1974; Crabbe et al., 1991; Finn and Crabbe, 1999). Thus, we
hypothesized that administration of a subconvulsant dose of PTZ
would enhance the aversivemotivational effects of alcoholwithdrawal
and thereby increase the strength of conditioned place aversion.
2. Method

2.1. Subjects

Subjects were alcohol-naïve, adult male mice selectively bred for
low alcohol preference (LAP1 line). Mice used in the place
conditioning procedures were 82–124 days old and mice used in the
HIC procedure were 52–64 days old at the start of each experiment.
LAP1 mice were used in the current studies because they are readily
available in our laboratory and they exhibit greater HICs during
withdrawal from both acute and chronic (vapor chamber) alcohol
exposure compared to their counterparts bred for high alcohol
preference (HAP) (unpublished data from our laboratory and from
the laboratory of Dr. John C. Crabbe at Oregon Health & Science
University: P. Metten, N.J. Grahame, J.C. Crabbe, personal communi-
cation). This finding is consistent with the well-documented negative
correlation between magnitude of alcohol withdrawal signs and
alcohol drinking propensity in rodents (Chester et al., 2002; 2003;
Metten et al., 1998). Thus, LAP1 mice were used as subjects (as
opposed to HAP mice) in an effort to maximize our ability to detect
aversive motivational effects of alcohol withdrawal in the place
conditioning procedure.

The LAP1 mouse line was derived from a foundation stock of
outbred HS/Ibg mice (Boulder, Colorado, USA) at the Indiana Alcohol
Research Center (IARC) (Grahame et al., 1999). HS/Ibg mice were
originally created by an intercross of eight different inbred mouse
strains (A, AKR, BALB/c, C3H/2, C57BL, DBA/2, Is/Bi, and RIII)
(McClearn et al., 1970). Subjects were generated at Purdue University
from 8 original LAP1 breeder pairs (generation 27) obtained from the
IARC. The mice used in the present study were 3rd, 4th, and 5th
generation offspring from these original breeders maintained with
relaxed selection. There were on average 22 breeder pairs used to
generate experimental subjects for the current studies and care was
taken to ensure heterogeneity in subjects' genetic background by
avoiding genetic conflicts between breeder pairs at the parental and
grandparental levels.

Mice were weaned at 20–23 days old and housed in polycarbonate
cages (11.5×7.5×5.0in.) in groups of 2–4 per cage with aspen wood
shavings. Ambient temperature in the colony room was maintained at
21±1 °C and mice had free-access to food (Rodent Lab Diet 5001,
Purina Mills Inc., St. Louis, MO) and water in the home cage.
Experimental procedures were conducted during the light phase of a
12:12 light:dark cycle (lights on at 0700). Experiments were conducted
in accordance with the National Institutes of Health Guide for Care and
Use of Laboratory Animals and the experimental procedures were
approved by the Purdue Animal Care and Use Committee.

2.2. Apparatus

The apparatus consisted of 8 identical open-top boxes made of
Plexiglas (43.2×21.6×25.4 cm) enclosed in separate ventilated
sound- and light-attenuated chambers (76.2×50.8×20.3 cm). Each
box was surrounded by an open field activity frame (SmartFrame Low
Density, Lafayette Instrument Co, Lafayette, IN, USA) that contained
eight infrared photobeams along the length and four along the width
of each frame (internal frame dimensions: 24.1×45.7 cm). The floor
of each box consisted of interchangeable halves with distinct floor
textures. One floor texture (the grid floor) consisted of 4 mm steel
rods mounted 3.5 mm apart and the other floor texture (the hole
floor) wasmade up of perforated 16 gauge stainless steel with 6.4 mm
holes on 9.5 mm staggered centers. The photobeams were approxi-
mately 2 cm above the floor of each box. Locomotor activity and side
position (left or right) for eachmouse was continuously monitored by
a computer program (Hamilton-Kinder MotorMonitor, Model
HMM100, Hamilton-Kinder Motor Monitor, San Diego, California,
USA). General activity and location of the animal (left or right) within
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the box are continuously measured by occlusion of the infrared
photobeams. This place conditioning apparatus was constructed with
slight modifications based on that used in prior work with mice (e.g.,
Chester and Cunningham, 1998; 1999a,b; Chester et al., 1998;
Grahame et al., 2001).

2.3. Drugs

Alcohol was diluted from a 95% (v/v) solution to a concentration of
20% (v/v) with 0.9% saline and administered in a dose of 4.0 g/kg
(25.0 ml/kg injection volume). PTZ was dissolved in 0.9% saline and
administered in a dose of 5.0 mg/kg (10.0 ml/kg injection volume).

2.4. Procedures

2.4.1. Handling-induced convulsions
As previously mentioned, we chose to condition mice at 8 h in

withdrawal because this is the time point at which peak HICs have
been demonstrated in mice exposed to an acute dose of 4.0 g/kg
alcohol (e.g., Crabbe et al., 1991; Crabbe, 1998; Metten and Crabbe,
1994). Similar findings have previously been found in LAP1 mice
(Metten et al., personal communication). Furthermore, we have
previously demonstrated that blood alcohol levels in LAP1 mice
exposed to an acute dose of 4.0 g/kg alcohol are negligible at 8 h in
withdrawal (Chester and Barrenha, 2007). However, to confirm the
time course of physical withdrawal in LAP1 mice and provide
additional support for our choice of withdrawal conditioning time
point,we assessedHICs in a group ofmale LAP1mice following a single
injection of 4.0 g/kg alcohol.

HICs were assessed in LAP1 mice (n=10) using a 7-point rating
scale modified from Goldstein (1972) and previously described (e.g.,
Metten and Crabbe, 1994). Each mouse was lifted by the tail and
observed for signs of convulsive behavior. If no signs were observed
within 2 s the mouse was gently rotated 180° and observed again.
Two baseline HICs scores were taken 20 min apart, the second of
which occurred immediately prior to injection of 4.0 g/kg alcohol.
Mice were then scored for HICs every hour for 12 h and again at 24 h
post-alcohol injection.

2.4.2. Place conditioning
The place conditioning procedure involved one 60-min pre-test,

eight 30-min conditioning sessions, and two 60-min post-tests.
Conditioning sessions were conducted on consecutive days except
that a 48-h break separated the first four and the second four sessions.
The alcohol withdrawal studywas conducted in four replications due to
limitations associated with breeding, apparatus number, and condi-
tioning time parameters.

An independent control experiment was conducted to verify that
evidence for alcohol withdrawal-induced place conditioning was not
influenced by potential changes in unconditioned floor preference due
to repeated exposure to the apparatus, handling, injections, and floor
stimulus cues over the course of the experiment (Cunningham et al.,
2003). In this study, mice were exposed to the same experimental
procedures but received saline throughout the experiment.

Pre-test. Initial preference for the two floor textures used as
conditioning stimuli was assessed 24 h prior to the start of the first
conditioning trial. All mice were placed in the apparatus on a half grid/
half hole floor for 60 min. Floor position (left versus right side of the
box) was counterbalanced within each conditioning subgroup.

Conditioning. Mice were subjected to a differential place condi-
tioning procedure where they were randomly assigned to one of two
separate conditioning subgroups within each experimental group.
Each conditioning subgroup received exposure to either a grid or hole
floor paired with drug treatments (CS+ conditioning sessions) and
the other floor type pairedwith saline (CS− conditioning sessions) for
a total of 4 four CS+ and CS− conditioning sessions. All subjects in
each group received equal exposure to drug/saline treatments and to
both floor textures. The advantage of this differential conditioning
procedure is that it provides control over the subjects' exposure to the
floor types and to drug exposure so that the conditioning subgroups
differ only in the specific floor that is paired with drug effects
(Cunningham, 1993). Assignment of mice to experimental groups and
conditioning subgroups was counterbalanced by litter of origin
(genetic background), order of exposure to the CS and drug exposure,
and apparatus enclosure.

For the alcohol withdrawal study, mice were assigned to one of three
experimental groups: alcohol withdrawal (n=30), PTZ (n=30), and
PTZ+alcohol withdrawal (n=31). On alternating CS+ conditioning
days, mice in the alcohol withdrawal and PTZ+alcohol withdrawal
groups received an intraperitoneal (i.p) injection of 4.0 g/kg alcohol and
thePTZgroup receivedanequal volumeof saline8 hprior tobeingplaced
on a homogeneous grid or hole floor for 30 min. Five minutes before the
CS+ conditioning session,mice in the PTZ and PTZ+alcoholwithdrawal
groups received an i.p. injection of 5.0 mg/kg PTZ (10.0 ml/kg) and the
alcohol withdrawal group received an equal volume of saline. The 5-min
pretreatment timewas chosenbasedon the fact that PTZproduces effects
on behavior within 5 min following i.p. injection (Crabbe et al., 1991;
Freund et al., 1987). On intervening CS− conditioning days, all groups
received two saline injections, one at 8 h and one at 5 min, prior to being
placed on the alternate floor type. The floors and inside of the box were
wipedwith a damp sponge between each subject. Allmicewere handled
by the scruff of theneck rather than the tail in order to avoid elicitingHICs
during conditioning.No evidence of convulsive behaviorwas seenduring
conditioning.

For the saline control study, mice (n=16) were randomly
assigned to conditioning subgroups but they received saline injections
at 8 h and at 5 min before each conditioning session.

Post-tests. The post-tests were conducted in the same manner as
the pre-test. The first post-test was conducted in a drug-free state 24 h
after the last conditioning session. The second post-test was “state-
dependent,” conducted 72 h after the first post-test. In the alcohol
withdrawal study, a small portion of the mice received their state-
dependent test at 96 h after the first post-test because one of the
replications occurred over a holiday. Prior to the state-dependent test,
all groups received their same respective drug treatments as that
given on CS+ conditioning sessions at 8 h and 5 min before the test
session. For the control study, two post-tests were given in the same
manner as the alcohol withdrawal study but only saline injections
were administered.
2.5. Statistical analyses

Data were analyzed using analysis of variance (ANOVA) with the
significance level set at pb0.05. Between-group factors included
Group (alcohol withdrawal, PTZ, PTZ+alcohol withdrawal, saline) or
Pretreatment (saline or PTZ) and Conditioning Treatment (saline or
alcohol withdrawal). Within-group factors included Floor Type (grid
or hole), CS Session Type (CS+ or CS−), Conditioning Session (1–4),
Test Phase (pre- versus post-conditioning), and Minute or Hour.
Because experimental procedures were identical, place conditioning
data from the alcohol withdrawal and the saline control study were
analyzed together. For the HICs study, the two baseline scores were
averaged and compared to the peak withdrawal magnitude score
which was calculated by averaging the highest HIC score and the HIC
score taken before and after the highest HIC score (Metten and
Crabbe, 1994). Significant main effects and interactions were followed
using lower-order one-way ANOVAs and paired samples t-tests,
where appropriate (Keppel, 1991). Pearson product moment correla-
tions were conducted to determine the relationship between
locomotor activity during conditioning and testing and themagnitude
of conditioned place aversion.



Fig. 2. Mean (±sem) activity levels during CS+ and CS− conditioning sessions in the
alcohol withdrawal (AW), PTZ, PTZ+alcohol withdrawal (PTZ+AW), and saline (SAL)
groups collapsed across conditioning sessions 1–4; *pb0.05 CS+ versus CS− sessions.
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3. Results

3.1. Handling-induced convulsions

Fig. 1 shows the time course of HIC scores in LAP1 mice following a
single injection of 4.0 g/kg alcohol. As can be seen in the figure, the
peak magnitude of convulsions occurred on average at 8 h in
withdrawal. One mouse was removed from the analysis because it
showed the highest HIC score during the last (24) h of measurement
and thus a peak withdrawal score could not be calculated. Paired
samples t-test revealed a significant difference between the average
baseline scores and the peak withdrawal magnitude scores (t=−3.3,
df=8, p=0.01).

3.2. Alcohol withdrawal place conditioning study

Two mice died during the course of the study and were removed
from all analyses.

3.2.1. Pre-test
Overall analysis of the 60-min pretest data (Group×Floor Type×

Minute ANOVA) yielded main effects of Floor Type [F(1,103)=12.8,
p=0.001] and Minute [F(59,6077)=1.4, pb0.05] and a Floor
Type×Minute interaction [F(59,6077)=1.6, pb0.01]. Follow-up
one-way ANOVAs indicated main effects of Floor Type during both
the first 30 and last 30 min of the session [FsN8.0, psb0.01], due tomice
spending on average more time on the grid floor (32.1±0.6 s/min)
versus the hole floor (27.8±0.6 s/min) during the 60-min pre-test.
However, the average amount of timemice spent on their assigned CS+
floor versus CS− floor during the 60-min pre-test was not statistically
different (CS+ floor: 29.8±0.6 s/min; CS− floor 30.2±0.6 s/min).

Mean (±sem) activity counts during the pre-test were 82.6±1.9,
81.1±2.3, 83.6±2.1, and 82.7±2.6 for the alcohol withdrawal, PTZ,
PTZ+alcohol withdrawal, and saline group, respectively. One-way
ANOVA showed no group differences in activity levels.

3.3. Conditioning trial activity

Fig. 2 depicts mean (±sem) activity levels during CS+ and CS−
conditioning sessions collapsed across conditioning sessions 1–4 in each
group. Activity levels in the alcohol withdrawal and PTZ+alcohol
withdrawal groups were reduced during CS+ conditioning sessions
compared to CS− session activity levels and compared to the PTZ group.
Overall analysis of the data (Group×Conditioning Session×CS Session
Type) yielded main effects of Group [F(3,103)=2.7, pb0.05], Condi-
tioning Session [F(3,309)=6.5, pb0.001], CS Session Type [F(1,103)=
Fig. 1. Mean (±sem) HIC scores in male LAP1 mice following a single i.p. injection of
4.0 g/kg alcohol. BASE indicates the average of two baseline scores taken 20 min apart
just prior to the alcohol injection.
36.5, pb0.001], and Group×Conditioning Session [F(9,309)=3.9,
pb0.001] and Group×CS Session Type [F(3,103)=11.7, pb0.001]. To
explore the Group×CS Session Type interaction, follow-up one-way
ANOVAs of activity levels on CS+ versus CS− conditioning sessions
were conducted within each group (collapsed across the four condi-
tioning sessions). These analyses indicated significantly lower activity
levels in the alcohol withdrawal and PTZ+alcohol withdrawal groups
on CS+ conditioning sessions compared to CS− conditioning sessions
(FsN58.2, psb0.001). Activity levels on both trial typeswere comparable
in the saline and PTZ groups. In addition, activity levels on CS+ sessions
did not differ between the alcohol withdrawal and PTZ+alcohol
withdrawal groups. A three-way ANOVA (Pretreatment×Conditioning
Treatment×CS Session Type) indicated main effects of Conditioning
Treatment [F(1,103)=6.8, p=0.01; alcohol withdrawalbsaline] and CS
Session Type [F(1,103)=36.5, pb0.05; CS+bCS−] and a Conditioning
Treatment×CS Session Type interaction [F(1,103)=33.3, pb0.001] but
no interaction with Pretreatment. Reduced locomotor activity during
alcohol withdrawal is a finding consistent with prior reports in rodents
(e.g., File et al., 1989; Jung et al., 2000; Kliethermes et al., 2004; Knapp
et al., 2005; Onaivi et al., 1989; Rasmussen et al., 2001).

3.4. Post-test 1: drug-free

Evidence for place conditioningwas assessed by conducting within-
subject comparisons of the amount of time spent on the CS+ floor
during the pre-test to the amount of time spent on the CS+ floor during
the post-tests. All pre- versus post-test comparisonswere conducted on
data averaged across the 60-min test session because initial analyses
indicated that time spent on the CS+ floor was relatively constant
across the 60-min test in all groups. Fig. 3 shows mean (±sem)
difference scores for each group calculatedby subtracting the time spent
on the CS+ floor during the pre-test from time spent on the CS+ floor
during post-test 1 (drug-free).

The repeated-measures analysis of time on the CS+ floor
[Group×Test Phase ANOVA] indicated a Group×Test Phase interac-
tion [F(2,88)=3.3, pb0.05]. However, follow-up comparisons of Test
Phase within each Group indicated no significant effects. Pre- versus
post-test difference scores were also analyzedwith a two-way ANOVA
(Pretreatment×Conditioning Treatment) to determine whether PTZ
pretreatment affected the development of conditioned place aversion
to alcohol withdrawal as evidenced during the drug-free test. This
analysis showed a main effect of Pretreatment [F(1,103)=4.7,
pb0.05; PTZ-treatedbsaline-treated] but no other significant effects
were found.

Mean (±sem) activity counts during post-test 1 were 72.7±3.6,
84.1±3.6, 73.6±3.6, and 83.3±4.0 for the alcohol withdrawal, PTZ,
PTZ+alcohol withdrawal, and saline group, respectively. Two-way
ANOVA (Pretreatment×Conditioning Treatment) indicated a main



Fig. 3.Mean (±sem) difference scores for each group calculated by subtracting the time
spent on the CS+ floor during the pre-test from time spent on the CS+ floor during the
drug-free and state-dependent preference tests; *pb0.05 post-test CS+ time versus
pre-test CS+ time.
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effect of Conditioning Treatment [F(1,103)=7.5, pb0.01; alcohol
withdrawal-treatedbsaline-treated] but no other effects were found.

Pearson correlations between post-test 1 difference scores and
average activity levels during CS+ conditioning trials (r=−0.037,
p=0.71, n=107) and during post-test 1 (r=−0.119, p=0.22,
n=107) were not significant.

3.5. Post-test 2: state-dependent

Fig. 3 shows mean (±sem) difference scores for each group
calculated by subtracting the time spent on the CS+ floor during the
pre-test from time spent on the CS+ floor during post-test 2 (state-
dependent).

The repeated-measures analysis of time on the CS+ floor
[Group×Test Phase ANOVA] indicated a Group×Test Phase interaction
[F(3,103)=2.7, p=0.05]. Follow-up comparisons of Test Phase within
each group indicated a significant place aversion in the PTZ+alcohol
withdrawal group [F(1,30)=4.2, pb0.05; post-test CS+ timebpre-test
CS+ time]. As was done with post-test 1 data, pre- versus post-test
difference scores were analyzed with a two-way ANOVA (Pretreat-
ment×Conditioning Treatment) which showed a main effect of
Pretreatment [F(1,103)=5.1, pb0.05; PTZ-treatedbsaline-treated].
This effect is clearly due to the significant aversion in the PTZ+alcohol
withdrawal group (see Fig. 3) but there was not enough statistical
power to detect a Pretreatment×Conditioning Treatment interaction.

Mean (±sem) activity counts during post-test 2 were 44.2±4.2,
73.7±4.2, 50.0±4.1, and 82.3±5.0 for the alcohol withdrawal, PTZ,
PTZ+alcohol withdrawal, and saline group, respectively. Two-way
ANOVA (Pretreatment×Conditioning Treatment) indicated a main
effect of Conditioning Treatment [F(1,103)=46.5, pb0.001; alcohol
withdrawal-treatedbsaline-treated] but no other effects were found.

Pearson correlations between post-test 2 difference scores and
average activity levels during CS+ conditioning trials (r=0.067,
p=0.49, n=107) and during post-test 2 (r=0.002, p=0.98,
n=107) were not significant.

4. Discussion

Alcohol withdrawal produces aversive motivational effects which
have been hypothesized to play a primary role in the development of
alcoholism (Chester et al., 2002; 2003; Koob, 2003; Wall and Ehlers,
1995). Relatively few animal models have been developed that assess
the motivational effects of alcohol withdrawal. The goal of the present
study was two-fold: 1) to determine whether a conditioned place
aversion to alcohol withdrawal could be detected in mice and 2)
whether PTZ administration during alcohol withdrawal would
increase the strength of the conditioned place aversion.

With regard to the first study goal, conditioning during alcohol
withdrawal did not produce a significant conditioned place aversion
during either the drug-free or state-dependent preference test. Only
two prior studies in rats have reported place conditioning to alcohol
withdrawal. Gauvin et al. (1997) reported a place preference andMorse
et al. (2000) reported a place aversion to alcohol withdrawal.
Comparison between these discrepant studies and with the present
data is particularly difficult because there is no consistency among the
experimental procedures used. For example, Gauvin et al. found a place
preference after 8 pairings of the non-preferred environmental stimuli
(biased procedure)with alcoholwithdrawalwhereasMorse et al. found
a place aversion after a single pairing of neutral environmental stimuli
(unbiased procedure) with alcohol withdrawal. Another major differ-
ence between studies was that Gauvin et al. conditioned rats at 18 h in
withdrawalwhereasMorse et al. conditioned rats at 10 h inwithdrawal.
We chose to condition mice at 8 h in withdrawal because it is the time
point at which peak physical signs of alcohol withdrawal, assessed via
HICs, were evident in LAP1 mice following a single injection of 4.0 g/kg
alcohol. However, it is possible that we missed the ideal conditioning
time point that would have produced a conditioned place aversion.
Indeed, there is evidence in rodents that affective ormotivational effects
of alcohol withdrawal extend past the time that physical signs of
withdrawal are evident (e.g., Prediger et al., 2006; Roberts et al., 2000).
For example, Prediger et al. (2006) showed that alcohol withdrawal-
induced anxiety in mice was greatest between 12 and 18 h in
withdrawal from a single injection of 4.0 g/kg alcohol. Finally, it should
benoted that species differences could account for thediscrepant results
between the present and prior studies. Alcohol intoxication has been
shown to produce place aversion in rats but place preference in mice
exposed to identical conditioning parameters (Cunningham et al.,
1993). Thus, theremay also be relevant species differences in sensitivity
to the rewarding or aversive effects of alcohol withdrawal. The overall
lack of studies showingplace conditioning to alcoholwithdrawal, unlike
with opiate withdrawal, could partly be due to the fact that alcohol
withdrawal is not a discrete stimulus and there is no established
procedure for precipitatingwithdrawal from alcohol. This situation, and
the cumbersome nature of the place conditioning procedure, makes it
challenging to identify effective conditioning parameters that will
capture the aversive effects of alcohol withdrawal and maximize the
salience of alcohol withdrawal as an unconditioned stimulus.

This is the first study to report a place aversion to alcohol
withdrawal in mice using a drug (PTZ) to “precipitate” or increase the
aversive effects of alcohol withdrawal. The PTZ+alcohol withdrawal
group showed a significant place aversion during the state-dependent
test. These data suggest that the combined stimulus properties of PTZ
and alcohol withdrawal facilitated the expression of conditioned place
aversion to alcohol withdrawal. Further, this finding suggests that PTZ
can reveal sub-threshold aversive motivational effects of alcohol
withdrawal that are present at 8 h in withdrawal, a time point when
peak physical signs of alcohol withdrawal are evident in mice (See
Fig. 1; Crabbe et al., 1991; Crabbe, 1998; Metten and Crabbe, 1994).
However, additional studies are needed to determine whether this
effect is dependent on the presence of PTZ during conditioning trials
or whether acute administration of PTZ during the expression test is
sufficient to reveal a conditioned place aversion to alcohol withdraw-
al. Interestingly, we have previously shown that pretreatment with
the GABAA receptor antagonists, picrotoxin and bicuculline, prior to
conditioning trials with alcohol enhanced alcohol-induced condi-
tioned place preference; however, these drugs were not given prior to
the preference test (Chester and Cunningham, 1998). It should also be
noted that the magnitude of conditioned place aversion seen in the
PTZ+alcohol withdrawal group was small and more work is needed
to explorewhether other experimental parameters, such as a different
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PTZ dose or conditioning time point, may produce a greater effect. The
lack of preference or aversion behavior in the PTZ alone and saline-
treated groups indicates that the observed effect in the PTZ+alcohol
withdrawal group is not due to rewarding or aversive effects of PTZ
itself or to changes in unconditioned preference for the conditioning
stimuli during repeated conditioning and testing procedures.

PTZ is a GABAA receptor antagonist and is frequently used as a
chemoconvulsant toprecipitate thephysical signsof alcoholwithdrawal
and assess alcohol dependence-related phenomena (e.g., Cagetti et al.,
2004; Chesher and Jackson, 1974; Crabbe et al., 1991; Finn and Crabbe,
1999; Ripley et al., 2002). However, little is known about the effects of
PTZ on the motivational or affective symptoms of alcohol withdrawal.
Prior studies indicate that the discriminative stimulus effects of PTZ are
similar to alcoholwithdrawal (Gauvin et al., 1989, 1993; Lal et al., 1988),
particularly in male rats (Jung et al., 1999). Thus, the current findings
could be explained via an additive effectwhere combined sub-threshold
aversive effects of PTZ and alcoholwithdrawal produce a salient enough
unconditioned stimulus to support the development of a conditioned
place aversion. One potential mechanism for this effect is that PTZ
increases anxiety during alcohol withdrawal. Both PTZ (see Jung et al.,
2002 for review) and withdrawal from high doses of alcohol produces
anxiety-related behavior in both rats and mice (e.g., Overstreet et al.,
2002; Valdez et al., 2002; Verleye et al., 2009; Zhang et al., 2007) and
drugs that enhance activity at the GABAA receptor can reverse the
anxiogenic effects of alcohol withdrawal (e.g., Knapp et al., 2005;
Roberto et al., 2008; Verleye et al., 2009;Watson et al., 1997). However,
Gauvin et al. (1991) showed that PTZ can also produce a conditioned
place preference in rats. This result led to the suggestion that PTZ may
have some rewarding motivational effects in addition to its anxiogenic
effects and that anxiety inducedwith low tomoderate doses of PTZmay
serve to enhance learning in the place conditioning task, similar to that
reported in other classical conditioning procedures (e.g., Taylor, 1951).
It should also be noted that an alternative interpretation of the current
results is that PTZ facilitates learning about stimulus effects of the
alcohol withdrawal state independent of its influence on the motiva-
tional aspects alcohol withdrawal. GABAA receptor antagonists are
known to enhance memory-related processes in different types of
learning tasks (see reviews by Chapouthier and Venault, 2002;
Izquierdo and Medina, 1991).

The significant conditioned place aversion to alcohol withdrawal in
the PTZ+alcohol withdrawal group during the second post-condition-
ing preference test suggests that the expression of the aversion is
influenced by a state-dependent memory retrieval process. State-
dependent retrieval occurs when the recall of a previously learned
response is facilitated by, or entirely dependent upon, the physiological
or affective “state” under which the organism originally learned the
response (see review by Overton, 1991). In the drug place conditioning
literature, a wide range of findings have been reported in rodents, with
many studies indicating that state-dependent processes do not
influence the expression of conditioned drug responses (e.g., substance
P: Elliott, 1988; alcohol: Gremel and Cunningham, 2007; morphine:
Mucha and Iversen, 1984; amphetamine: Reicher and Holman, 1977;
diazepam: Spyraki et al., 1985) while others have shown that
administration of the training drug prior to testing enhances (heroin:
Bozarth, 1987; alcohol: Cunningham, 1979; cholecystokinin: Swerdlow
et al., 1983) or reveals (morphine: Bespalov et al., 1999; WAY161503:
Mosher et al., 2006; lithium chloride, naloxone, FG1742: Oberling et al.,
1993) a conditioned place preference or aversion. To our knowledge,
this is the first report indicating state-dependent effects on the
expression of place aversion to withdrawal from a drug, in this case,
alcohol. In the two prior reports of place conditioning to alcohol
withdrawal in rats (Gauvin et al., 1997; Morse et al., 2000), the authors
did not address the question of whether conditioned behavior was
influenced by a state-dependent mechanism.

A point worth mentioning is that reduced locomotor activity during
alcohol withdrawal may have somehow influenced the acquisition of
conditioned place aversion or the expression of conditioned place
aversion during the state-dependent test. However, this possibility
seems unlikely because both alcohol withdrawal groups showed
reduced locomotor activity during conditioning trials and during the
state-dependent test but only the PTZ+alcohol withdrawal group
displayed a conditioned place aversion. Consistent with prior studies of
conditioned place preference (e.g., Chester and Cunningham, 1999a,b;
Cunningham, 1995; Gremel and Cunningham, 2007), we found no
correlation between activity levels on CS+ conditioning trials and place
aversion magnitude during the state-dependent test. In addition,
although some previous studies have indicated a positive correlation
between magnitude of place preference and test activity levels (e.g.,
Gremel and Cunningham, 2007; Neisewander et al., 1990), we found no
correlationbetweenplaceaversionmagnitudeand activity levels during
the state-dependent test.

In summary, PTZ administration during alcohol withdrawal
conditioning trials produced a state-dependent conditioned place
aversion. This finding perhaps reflects a phenomenon whereby PTZ
increases or “precipitates” the aversive effects of alcohol withdrawal
and provides further support for a role of the GABAA receptor in
modulating the neurochemical and behavioral effects of alcohol
withdrawal (e.g., Cagetti et al., 2003; Devaud et al., 2003; Follesa et al.,
2006; Knapp et al., 2005; Morrow et al., 1991). GABAA receptor
antagonists such as PTZmay be useful to increase the sensitivity of the
place conditioning procedure as a measure of the aversive effects of
alcohol withdrawal in rodents. A model such as this is a valuable tool
to identify and characterize genetic and neurochemical mechanisms
that mediate sensitivity to aversive motivational effects of alcohol
withdrawal that, in turn, may influence alcohol drinking behavior.
Future studies using this technique could eventually lead to the
discovery of novel behavioral and pharmacological treatments for
alcoholism.
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